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Abstract: The research region covered by the secondary forest and it has quickly extended. Estimating either 

beneficial economic or environmental impacts needs accurate maps. Sentinel-2 Multispectral Instrument (MSI) 

with its distinctive synoptic coverage capability provides accurate and instantly valuable data. Three classification 

techniques (Artificial Neural Network (ANN), Support Vector Machine (SVM) and Spectral Angle Mapper (SAM) 

were investigated in this paper utilizing Sentinel-2 MSI image with training samples of various sizes to map 

secondary forest cover.  SVM had the perfect output with overall accuracy varying from 86% to 92% and a 

coefficient of Kappa from 0.76 to 0.85, depends entirely on the sample size of the training data (varying from 20 to 

500 pixels per class). SVM's benefit was more apparent once the sample size of the training was lower. ANN 

needed the involvement of the user, the level of his / her knowledge and experience affected the accuracy. The SAM 

algorithm surpassed alike SVM and ANN in aspects of speed and efficiency for large-scale secondary forest 

mapping. Furthermore, the maximum threshold values of the SAM spectral angle for a large training sample size 

are in agreement with the outcomes of previous studies, that implies the potential subjectivity of the SAM 

threshold. If verifiable, the SAM algorithm will be a simple and robust methodology commonly for large-scale 

mapping of secondary forest. 
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I.    INTRODUCTION 

Secondary forest mapping has been acknowledged as a fundamental task for science, environmental and policy data, 

forest management, statistics, and financial reasons, environmental issues, and sustainable forest management at the 

global, regional and local level. Environmental studies concerning biogeochemical cycles, natural resource conservation 

and management, urban planning, food and health, among others, and earth system researchers as entry into forest 

models. In addition, modifications in the secondary forest region induced by human and abiotic and biotic changes (1) 

Due to changing climate circumstances, data is important (1-3). Remote sensing with a wide range of spatial and spectral 

resolution is the most important technology for effective secondary forest cover mapping on a global, regional and local 

scale to define the spatial area and extent of the secondary forest, putting numerous benefits like cost-effectiveness and 

repeatable of observations. (4, 5). Satellite optical and radar imagery has been commonly used to classify, define and map 

secondary forest cover (6-8).  

Several authors used various remotely sensed optical information and various algorithms to map the forest. For example, 

Shen et al. (9) investigated the Mapping possibility of forest ecosystems at tree-level species from elevated spatial 

resolution hyperspectral imagery (AISA) in Hachioji, Japan. Eight standard classification techniques were evaluated for 

mapping performance such as SAM, which obtained the highest outcome.  Additionally, Kachmar et al. (10) applied 

Landsat 5 TM information for the classification of prevalent forest cover types in Japan's Naeba Mountains in the SAM 

classification. Though, using either certain spectral class thresholds or using spectral angle mapper classifiers, imaging 

techniques are problematic due to the quickly evolved canopy that allows secondary forest cover spectrally similar to 
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other types of land cover. (11-13) Saturation of the ideal images created by the closure of the canopy will also decrease 

forest viewing from other land cover classes  (14). Regular cloud coverage in humid tropical areas prevents the 

acquisition of cloud-free optical satellite images to observe large secondary forest areas (15). By contrast, satellite radar 

imagery is all-weather and worthy of all-time. Many scientists thus use radar satellite information to track and map forests 

in tropical regions (8, 16). The comparatively excellent secondary forest mapping capabilities from both airborne and 

spatial radar sensors have been demonstrated by different authors (17-19). Radar systems are able to obtain usable 

information independently of daylight and atmospheric circumstances, unlike optical sensor systems. This is a separate 

benefit, especially for apps requiring timely data.  The most prevalent weakness of both airborne and spatial radar 

detectors is their topography sensitivity. (20, 21). Topographic variations influence the radar backscatter's power and 

therefore generate tonal distinctions in radar images.  Variations in image tone caused by topography can be readily 

confused with tonal variations arising from other influences (e.g. cover type transitions) and thus complicate radar image 

visual and/or computer assessment. Image analysis methods are being developed to compensate for topographical impacts 

(22, 23) . 

New possibilities open to Earth Observation with the creation of the latest European Space Agency Sentinel-1, -2, -3 

satellite constellation. The series offers the scientific community with high operational capacity, long-term stability, 

superior sensor calibration and a range of sensing techniques and products (24). Also, the main benefit of a complete free 

and open access policy for most items is the distribution of Sentinel information. (25). On 23 June 2015, as part of the 

European Copernicus program, the Sentinel-2A satellite was effectively introduced and the first scenes were supplied a 

few days later (26). Sentinel-2 (S2) provides an innovative wide-ranging, high-resolution, multi-spectral imaging system 

(MSI) with 13 spectral bands, offering unbelievable land and vegetation views (26). It is supposed that the combination of 

increased resolution (up to 10 m), new spectral capabilities (e.g., three bands in the red-edge plus two bands in the SWIR), 

wide coverage (290 km swath width) and a minimum of five days of global revision time (with twin satellites in orbit) 

provides incredibly useful information for a wide range of land (and coastal) entries (25). In other terms, Sentinel-2A's 

distinctive mix of features reflects an unprecedented capacity for regional and global land cover descriptions and mapping 

(26). The scientific community has been seeking to provide feedback to system designers to determine the best algorithms 

and approaches for information exploitation in preparing for Sentinel's new satellite mission. This activity resulted in 

several studies reporting elevated ability of Sentinel information in different areas of implementation, however, actual 

information must be verified. Sentinel satellite information for science and commercial reasons are now accessible and 

willing to be used.  

In recent years, various classification algorithms range from parametric to non-parametric techniques to secondary forest 

cover mapping (27). Parametric methods (e.g., maximum likelihood) that suppose information is normally distributed and 

involve a large number of calibration locations were regularly used to characterize the forest cover (28, 29) however, they 

are difficult since non-normal, multi-model and categorical information used in heterogeneous landscapes could be 

remotely sensed and ancillary. Non-parametric methods that do not presume a specific distribution of information have 

increased interest in studies over the last century (30). Classification Trees(31), Artificial Neural Network (ANN)(32), 

Spectral Angle Mapper (SAM)(33), Neural Networks (33)and Support Vector Machines (34, 35)are Among the most 

prevalent models powered by non-parametric used to map secondary forest cover. These non-parametric techniques, but, 

appear to over-fit the calibration information and are often hard to perform due to the test and error needed to determine 

user-defined model calibration parameter values(30, 36-38).  

Nevertheless, the accuracy of the classification techniques varied depending on the classification techniques and the 

achievement of the discrimination often relies on the spectral difference between the secondary forest cover and other 

characteristics in the study region and needs unique expertise or skills to be used (39). By integrating various 

classification algorithms into operative instruments to use with Sentinel information, science attempts for secondary forest 

cover mapping are underway. To our understanding, furthermore, the combined use of SVM, ANN, and SAM as spectral-

based classifiers with Sentinel-2 MSI imagery in the mapping of secondary forest cover areas has been restricted, if not 

exist, especially in tropical conditions.  We are addressing this problem with the current research, so the goal is twofold: 

(1) to assess the ability of Sentinel-2 MSI imagery to map secondary forest and (2) to assess the efficacy of different 

classification techniques when using Sentinel-2 MSI information.  We used SVM, ANN, and SAM techniques to map 

secondary forests in a tiny region in the state of Kelantan, randomly have chosen training samples of distinct sample sizes 

from a big set of training points to evaluate the efficiency of distinct classification techniques, intended to include 

Sentinel-2 MSI information with a viable selection algorithm reference for secondary forest mapping. 



ISSN 2348-1196 (print) 
International Journal of Computer Science and Information Technology Research  ISSN 2348-120X (online) 

Vol. 8, Issue 1, pp: (79-94), Month: January - March 2020, Available at: www.researchpublish.com 
 

Page | 81  
Research Publish Journals 

II.   MATERIAL AND METHOD 

2.1 Study Area  

The study area covering an area of approx. 553.6 km2 in the Kuala Krai district of Kelantan State, Malaysia, situated 

among 102 ° 14'55.76"E and 102 ° 7'52.30"E and 5 ° 24'16.26"N and 5 ° 40'32.22"N among latitudes (Figure 1). The 

rainfall is a monthly mean rainfall of further than 6,000 mm. Approximately 27.5 C annual temperature. For secondary 

forest cover, the humid, equatorial environment is appropriate. It has been one of the region's main form of forest.  In this 

way our study region is comparatively flat, the altitude of the test research rises gradually from 100-900 m above sea 

level. 

2.2 Sentinel Data  

Sentinel-2A is introduced in June 2015 and can be downloaded from (https:/scihub.copernicus.eu/) to the public. 

Information from Sentinel-2A with Multispectral Instrument (MSI) is described by a range of 13 spectral bands with a 

ground spatial resolution varying from 10 m to 60 m (Table 1). Such spectral and spatial resolutions, together with the 

free accessibility of pictures, make Sentinel-2 very attractive for water mapping and flood tracking and other purposes 

such as forest and crop monitoring and mapping.  (3, 40). 

III.   METHODOLOGY 

3.1 Data Per-processing 

On 18 February 2016, Sentinel-2A MSI imagery was obtained at the geocoded level L1C (solar azimuth 127, solar 

elevation 66). The Sentinel-2A MSI-L1C datasets are Top of Atmosphere (TOA) reflectance's normal item and have been 

pre-processed. First, the atmospherically adjusted image utilizing sen2cor software version 2.3 (Telespazio VEGA 

Deutschland GmbH, Darmstadt, Germany) to create and format atmospheric bottom (BOA) Level-2A items using the 

Sen2Cor processor (version 2.3) under the platform of Anaconda Python. Sen2Cor allows the processing of Sentinel-2 

L1C products for physical atmospheric, terrain and cirrus correction and produces corrected bands for BOA reflection 

(40). The format of the yield item is a compilation of TIFF images with three distinct resolutions (10, 20 and 60 m) 

replicated bands. In this research, we used 10 m resolution bands to obtain and classify secondary forests. The Sentinel-2 

MSI picture was then geometrically corrected using 15 GCPs of significant characteristics (highways) and digital 

elevation models (DEM) to achieve enhanced geodesic precision and a geometrically corrected product free of 

inconsistencies  (41, 42). The polynomial function of the first order was shown and a nearest-neighbor resampling 

protocol was implemented to correct systematic changes between neighboring pictures in a few instances. Total Root 

Mean Square Error (RMSE) transformation equivalent to 0.08 that was less than 1 pixel (43-45) and much less than the 

rigorous 0.5 pixel criteria (46, 47). The Sentinel-2 MSI image was then re-projected by using the closest neighborhood 

resampling technique to the Universal Transverse Mercator (UTM) coordinating scheme with datum WGS 1984 and zone 

47 north. The data were spatially small subset to the study area see figure 2 (originally 20,490 or 15,489 pixels) with 

ENVI 5.1 software. 

 

FIGURE 1. STUDY AREA LOCATION IN KELANTAN SATE, MALAYSIA 
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TABLE 1. THE SENTINEL-2 MSI SENSOR SPECTRAL BAND DATA (IN THIS RESEARCH, BANDS 2, 3, 4, 

AND 8 WERE APPLIED). 

Sentinel-2 Bands Central Wavelength 

(µm) 

Resolution (m) Bandwidth 

(nm) 

Band 1—Coastal aerosol 0.443  60 20 

Band 2—Blue 0.490 10 65 

Band 3—Green  0.560 10 35 

Band 4—Red  0.665 10 30 

Band 5—Vegetation Red Edge 0.705 20 15 

Band 6—Vegetation Red Edge 0.740 20 15 

Band 7—Vegetation Red Edge 0.783 20 20 

Band 8—NIR 0.842 10 115 

Band 8A—Narrow NIR 0.865 20 20 

Band 9—Water Vapour  0.945 60 20 

Band 10—SWIR—Cirrus 1.380 60 30 

Band 11—SWIR 1.610 20 90 

Band 12—SWIR 20 180 2.190 20 180 

 

3.2 Regions of Interest (ROIs)  

In this study, we focused on mapping secondary forest cover using a simple classification scheme. All the training data for 

the assigned land cover classes were identified by digital land cove map for 2013, high spatial resolution Spot 5 imagery 

for 2014 and high-resolution imagery form google earth. These imageries convert to raster and open with ENVI 5.1 

software for algorithm training and validation of land cover classification. In the center of the individual land cover 

polygon, the ROI polygons were generated and dispersed as broadly as possible in the study area. All these geo-linked 

ROIs were rescued in ENVI 5.1 format with the land cover map and Spot 5 images. The samples of training were split 

into five primary categories of land cover: water bodies, urban area, primary forest, secondary forest, and others. 

 

FIGURE 2. A SAMPLE OF SENTINEL-2A MSI'S TRUE COLOR COMPOSITE 

We used a total of 2168, taking into account the picture information, phenology and ROI size, including 1294 pixels 

Water Bodies ROIs,1019 pixels Urban Area ROIs, 2973 pixels Primary Forest ROIs, 1495 pixels Secondary Forest ROIs, 

and 1622 pixels Others ROIs were included. To evaluate the efficiency of classification with a confusion matrix of 

different sample sizes, samples of different dimensions were chosen randomly by separating training from this ROI pool:  

518 pixels Water Bodies ROIs, 408 pixels Urban Area ROIs, 1189 pixels Primary Forest ROIs, 598 pixels Secondary 

Forest ROIs, and 649 pixels Others ROIs were included. SVM, ANN and SAM classification techniques used the same 

randomly chosen training samples. 
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3.3 Spectral Separability Assessments 

For purpose the spectral separability amongst land cover types, the M-statistic (Campbell & Wynne, 2011; Richards & 

Richards, 1999) with Jeffries–Matusita (J–M) distance method (Richards & Richards, 1999) were applied. The M-statistic 

defines class separability by mean and standard deviation values among two Landsat 8 sensor bands from two taster 

category distributions. M-statistics used in this research are provided as  

M= (µ1-µ2) / (σ1+ σ2) 

where the mean reflectance value of land cover class 1 is μ1 , the mean reflectance value of land cover class 2 is μ2, σ1 is 

the standard deviation value of land cover class 1 and σ2 is the standard deviation value of land cover class 2. The value 

of M < 1 shows that classes differ considerably and the capacity to separate areas is poor. At the other side, the value of M 

> 1 shows that the means of the histogram are well separated and it is comparatively simple to discriminate among 

regions. M statistics of each pair of land cover categories were contrasted for six Landsat 8 spectral bands. The calculation 

of J –M is premised on distance from Bhattacharya. It enables to show how statistically distinct a chosen spectral class 

pair is. J – M distance is provided for two classes a and b as  

 

where μa and μb are the mean values for classes a and b, Ca and Cb are the covariance matrices for classes a and b, and T 

denotes the transpose of a vector. J – M range is an index of 0.0 to 2.0. Its > 1.7 values show the classes are very well 

segregated. A distance J – M < 1.0 shows bad separability between class pairs (Kumar et al., 2017). 

Separability for all classes was investigated in ENVI software by calculating their spectral separability. Table 2 presents 

the outcomes of all feasible combinations to separate land cover classes. For Primary Forest, the overall pattern of JM 

values is quite comparable, and Secondary Forest classes with the separability values 1.7 show a good separation between 

these classes. (48). Whereas other classes are Primary Forest, Secondary Forest, and Urban Area classes, there is a 

significant distinction in value greater than 1.7 in the separability values among land classes that is moderate separation. 

According to (48) it is recognized. There are no pairs of land cover class that have A J – M range value < 1.0 showing that 

different land cover classes are difficult to distinguish.  

TABLE 2. TRAINING SAMPLES SEPARABILITY VALUES BASED ON JEFFRIES-MATUSITA (J-M) INDEX 

FOR VARIOUS LAND COVER CLASSES 

Land Cover Class Water 

Bodies 

Urban 

Area 

Primary 

Forest 

Secondary 

Forest 

Others 

Water Bodies  1.99 2 2 1.99 

Urban Area   1.99 1.99 1.88 

Primary Forest    1.73 1.83 

Secondary Forest      1.78 

Others      

 

3.4 Mapping Algorithms 

Figure 3 displays the workflow for secondary forest mapping. There have been multiple classification techniques and their 

accuracy has been evaluated. The algorithms for SVM, ANN and SAM were introduced and the outcomes were 

contrasted and efficiency was also checked for these techniques with distinct parameters. 
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FIGURE 3. THE WORKFLOW FOR MAPPING SECONDARY FOREST BASED ON SENTINEL-2 MSI 10-M 

IMAGERY 

a) SVM Classifier 

SVM classifier is a non-parametric classifier of statistical learning without any assumptions about the fundamental 

distribution of information. It offers in terms of the generalization error to achieve the ideal separation hyper-plane for a 

training data set. A comprehensive SVM algorithm description can be discovered in the (49). We have chosen carefully 

kernel features to obtain excellent classification outcomes. Kernel features that match the ideal hyper plane separation in 

the high-dimensional space used in ENVI v.5.1 involve four kinds: linear, polynomial, sigmoid, and radial basis function 

(RBF). Many studies (50-55) (56, 57) compared of kernel function and setting parameters, and in most cases RBF is 

considered to work well. The RBF, which is normally a sensible option for mapping land cover (56-58) , because of, first, 

the RBF kernel mapped samples non-linearly into a higher dimensional space so that the RBF was able to manage the 

situation when the relationship among class types and qualities was not linear. Second, the RBF kernel had fewer 

computing difficulties. We also attempted two more kernel features in this research: linear and polynomial, besides RBF. 

Considering the significance of kernel parameters optimization (55-57), for every kernel function, a variety of values were 

tested. For the polynomial and RBF kernels, the kernel radius (γ) value was higher than 0, ranging from 0.1 to 10, 

whereas the regularization parameter (C) varied from 1 to 100. As suggested in the ENVI User Manual, other parameters 

such as the number of pyramid levels to be used and the classification probability threshold value were set (59). The 

precision of the classification and the Kappa coefficient were evaluated. With the RBF kernel function, the largest 

accuracies were obtained and the penalty value parameters C and the kernel parameter γ were set at 120 and 0.15, 

respectively.  In relation, training datasets with various sizes of training samples (20, 50, 100, 200, 300, 400, 500 pixels 

per type) were investigated and then used to develop the SVM models to explore the impact of sample volume. 

b) ANN Classifier 

ANN is a human brain-inspired mathematical algorithm (60, 61), It is part of artificial intelligence methods, widely used 

in image analysis by computer instruments.  According to (62, 63) An ANN is a parallel processing dispersed processor 

consisting of easy processing units with a natural propensity to store and make accessible experiential information. A 

typical ANN includes a big amount of easy processing units, known as nodes, connected by weighted links according to a 

specific architecture. (64). The simple ANN model comprises an input layer, a hidden layer, and a layer of output (Figure 

4). Learning takes place by changing the node weights to reduce the distinction between the activation of the output node 

and the output. One can pick the number of hidden layers to use and choose among a feature of logistics or hyperbolic 

activation. A variety of parameters need to be set for the release of ANN. These include training rate, the training 
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threshold input, the training speed, the exit criteria field of RMS training and the number of concealed layers of using. 

The training speed defines the extent to which the weights are adjusted. A greater rate will accelerate the training and also 

increase the risk of the training consequence being oscillated or non-convergent. The input to the training limit determines 

the magnitude of the inner weight input to the activation level of the node and is used to adjust the modifications to the 

inner weight of a node. The training algorithm corrects the weights among nodes interactively and the node thresholds 

dynamically to reduce the mistake between the output layer and the required reaction. The training momentum is used to 

describe the training rate stage and its impact is to promote changes in weight in the present direction. A value greater 

than zero commonly enables a higher training rate to be set without oscillations. The entry criteria domain of the RMS 

training describes the error value of the RMS at which the training should stop.  The number of hidden layers describes 

whether or not various input regions with a single hyperplane will be linearly separable.  With no hidden layers (0 value), 

the various input areas are described as linearly separable with a single hyperplane, whereas if a greater value is used, 

non-linear classifications are conducted. Most of the ANN processors used in remote sensing are relying on a single 

hidden layer, but certain authors used two hidden layers in land cover classification networks. (see review by (60)). 

Reference (60) Already report that for most issues a single hidden layer should be adequate, particularly for classification 

assignments, since a multilayer perception with one layer can approximate any continuous function.  Detailed illustrations 

of the concepts of the ANN parameters are offered with reference to their concepts, workflows and learning algorithms 

and their potential and constraints as can see in (60, 62, 63, 65). In the current research, using a logistic activation 

function in ENVI version 5.1 the ANN classifier used is a layered feed-forward model. The layers of the network are an 

input layer, an output layer, and one or more hidden layers. For supervised learning, it utilizes conventional 

backpropagation. The root mean square error (RMSE) between the real output of a multilayer feed-forward ANN and the 

required output was minimized by an iteration gradient algorithm of backpropagation.  

 

FIGURE 4 REPRESENTATION OF THE OVERALL FRAMEWORK OF AN ANN, HERE WITH ONE 

HIDDEN LAYER (ADOPTED FROM(65)) 

Once the RMSE achieved the optimum level, the iteration system was halted. A training limit value of 0.9, a training rate 

of 0.2, a training momentum of 0.9 and a training RMS exit criterion of 0.1 have been used in the current research. The 

number of iterations for training was set at 1,000 and one layer hidden was used. Various sizes of training samples (20, 

50, 100, 200, 300, 400, 500 pixels for each variety) were used to assess the effect of training sample size on ANN. 

c) SAM Classifier 

SAM is a spectral classifier capable of determining the spectral similarity between the image spectrum and the reference 

spectrum by measuring the angle among the spectra and treating them as vectors in a dimensionally equal space to the 

number of bands used each time (66, 67). Two source laboratory and field observations can be obtained from reference 

spectra for the application of the SAM method or can be extracted straight from the satellite imagery. In a multispectral n-

dimensional space, a pixel vector has both magnitude (length) and angle calculated with respect to the axes defining the 

space's coordinate system (68). In cases of the form of the spectral pattern, the spectral similarity can also be evaluated 

utilizing angular distances (58) (69). SAM does not involve that the data be disseminated normally; they are not sensitive 
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to data variability and the size of the training data set (55, 70). In SAM, only angular data is used to define spectra of 

pixels, since the method is based on the premise that an observed reflectance spectrum is a vector in a multidimensional 

space where the number of dimensions is equal to the number of spectral bands.  Small angles between the two spectrums 

show elevated similarity and elevated angles indicate low resemblance, whereas the given peak angle threshold pixels 

with an angle bigger than the tolerance rate are not categorized (59). The threshold value mainly expresses the highest 

appropriate angle of separation between the end-member spectrum vector and the pixel vector in the number of 

dimensional space bands (once more, here the Sentinel-2 MSI's four reflective bands) see Table 3. Pixels are not 

categorized with values greater than this threshold value. In the current study, SAM was introduced as the maximum 

threshold value for all classes in the ENVI v 5.1 image processing environment using a single value of 0.3 radians. 

TABLE 3. RESULTS OBTAINED IN SEPARATE SPECTRAL ANGLE EXPERIMENTS WITH MAXIMUM 

THRESHOLD VALUES FOR SAM 

Classification method Overall Accuracy 

% 

Kappa Coefficient 

SAM-1(angle = 0.1) 65.74 0.58 

SAM-2 (angle = 0.2) 72.96 0.65 

SAM-3 (angle = 0.3) 74.92 0.67 

SAM-4 (angle = 0.4) 74.92 0.67 

SAM-5 (angle = 0.5) 74.92 0.67 

3.5 Accuracy Assessment  

Secondary forest maps produced by the algorithms SVM, ANN and SAM validate as samples in individual locations from 

the entire research region via randomly chosen 3362 ROIs as seen in Section 4.2. In this research, error matrix statistics 

with validation samples were conducted, error metrics is a prevalent technique of evaluating classification precision (71, 

72), from which the overall accuracy (OA), the accuracy of the producer (PA), the accuracy of the user (UA) and the 

kappa coefficient (Kc) were calculated as described: 

 

Where nii is the sample size of pixels classified accurately in the category; N is the total number of pixels in the confusion 

matrix; r is the number of rows, and nicol and nirow are the total column (source data) and row (expected classes) 

respectively. By dividing the sum of properly classified pixels to the total number of test pixels used for the classification, 

the OA can be evaluated. The UA is a commission error metric and indicates the likelihood that a class categorized on the 

map will truly represent that class on the ground. Likewise, PA is a measure of omission error and indicates the likelihood 

of proper classification of the real regions (68, 73, 74).  The Kc was calculated to distinguish the real contract between the 

classes that actually took place on the ground vs. classified by opportunity classifiers (75). Kc analysis was also 

conducted to assess whether a certain classification was considerably better than a random classification and whether 

there were two significantly distinct classifications. A Kc value of 0 refers to a complete random classification, whereas a 

Kc value of 1 corresponds perfectly to the classification and reference data (71).  

3.6 McNemar’s Test 

Using McNemar test, the importance of variations between these classification algorithms was calculated. It is beneficial 

to test the McNemar since it is parametric, very easy to comprehend and implement. It is also more accurate and delicate 

than the Kappa z-test (76-78). The test is premised on the normal standardized test as shown in Eq.2. 
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(2) 

Where; f11, indicates the number of instances incorrectly categorized by both classifiers whereas f22 indicates the number 

of instances correctly categorized by both classifiers, although f12 and f21 are instances correctly categorized by one 

classifier but wrongly categorized by the other.  (76-78). If the Z value is more than 1.96, a distinction in classification 

precision between the confusion matrices is statistically significant (p ≤ 0.05). (79, 80). 

IV.   RESULTS 

4.1 Secondary Forest Maps  

Figure 5 showed secondary forest maps produced by the techniques of SVM, ANN, and SAM. According to ROI 

validation, the classification findings relying on Sentinel-2 MSI were very accurate. Table 4 shows the general accuracies 

and Kappa coefficients for the three techniques of classification. We just demonstrate the findings for scenarios using a 

larger sample size (518 pixels for water bodies, 408 pixels for urban region, 1189 pixels for primary forest, 598 pixels for 

secondary forest, and 649 pixels for other types of land cover). It is shown that the general accuracies and Kappa 

coefficients for SAM were 74 % and 0.67 respectively for a larger training sample size (more than 500 pixels per class), 

while the general accuracies and Kappa coefficients were above 90.78 % and 0.88 for the other classification techniques. 

The figure demonstrates that the outcome is excellent separability of the main and secondary forests. 

 

FIGURE 5. SECONDARY FOREST AREA MAPS FROM THREE CLASSIFICATION METHODS 

TABLE 4. CONFUSION MATRIX FOR SVM, ANN AND SAM IN SECONDARY FOREST MAPPING 

ACCURACY. 
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4.2 Accuracy Assessment with Various Sizes of Training Samples and McNemar’s Test 

We calculated the overall accuracies and Kappa coefficients for various training sample sizes to evaluate the performance 

variation of the three classification methods with various training sample sizes, and the outcomes is shown in Figure 

6.  The output of SVM surpassed ANN and SAM for nearly all assigned training sample sizes, as per the general 

accuracies and Kappa coefficients The general precision and Kappa coefficient of SVM were 92.42 % and 0.90 

respectively for large training dimensions (i.e. no less than 500 pixels per class). The findings of SVM were almost 

identical to those of ANN (90.78 % for overall precision and 0.88 % for Kappa) and mildly superior to those of SAM 

(74.79 % for overall precision and 0.67 %for Kappa). The SVM and ANN techniques had greater overall accuracies and 

Kappa coefficients when the training sample size was lower, with superior overall accuracies 21% above SAM. Once 

training samples increased, the performance of accuracy enhanced quickly for the SAM technique. Whereas the increase 

in accuracy results was moderate for the SVM and ANN process.  When the size of the training was sufficiently large 

(more than 500 pixels per class), ANN and SVM were equally precise and higher than the SAM technique. In Kappa 

coefficients, the same trends emerged as in the overall accuracies. It is clear that the size of the training sample had less 

effect on the classification of SVM and ANN than on SAM. The overall accuracies and coefficients of Kappa indicate that 

SVM outperformed the other two techniques of classification.   

Table 5 demonstrates that the test value Z and P between SVM, ANN and SAM of the McNemar varied from 29 

(significant) to −25.03 (negligible), based on the sample size of the practice. With tiny sample sizes that decreased with 

enhanced training sample size, SVM had no important benefit. The McNemar test for SVM and SAM produced Z values 

ranging from -16.80 to 24.03 in favor of SVM at 200 sample sizes of practice. Z values varied as per the sample size of 

the training sample for ANN and SAM; when the sample size of the training sample expanded, the Z value often 

improved. It should be observed that no training sample was required as a SAM technique, so the growing Z values 

further demonstrate that SVM / ANN's efficiency increased along with increased training size.  SVM thus had a 

substantial benefit over ANN and SAM. Table 5 form it the McNamar's SVM, ANN, and SAM test. If the test value of 

the McNemar is higher than 1.96, the first technique offers a statistically significant enhancement in the outcomes of the 

classification. If the test value of the McNemar is less than −1.96, the former technique will have a statistically 

significantly lower output than the latter. 

 

FIGURE 6. THE OA AND K-COEFFICIENTS OF CLASSIFICATION METHODS SVM, ANN AND SAM 

TABLE 5 THE Z AND P VALUE OF MCNEMAR AMONG SVM, ANN AND SAM 

Size of Training Samples (Per Class) 

Classification Method 20 

Pixels 
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SVM vs. 

ANN 

z value -25.03 -0.57 -3.13 -8.63 6.96 -7.63 -2.88 

p value 0.0001 0.637 0.002 0.0001 0.0001 0.0001 0.005 

SVM vs. 

SAM 

z value -16.80 15.64 17.18 24.03 20.82 19.07 21.60 

p value 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001 

ANN vs. 

SAM 

z value 14.581 16.264 20.327 28.860 16.919 23.825 23.674 

p value 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001 
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V.   DISCUSSION 

5.1 Source of Uncertainty and Errors  

Numerous variables influence classification accuracy, like the technique of classification, source of information for 

remote sensing, and choice of samples for training. The 2018 Sentinel-2 MSI information was used in this research, but 

we selected training samples and validation samples based on Google Earth whose distant pictures were acquired in our 

research region in 2013–2017. Several land cover transfer may have happened throughout this time. Our result may have 

implemented some confusion or even error in the difference in image acquisition time. The region of the water could be 

underestimated. There's a lengthy river in the study region.  The river width is small, typically less than 50 m, which in 

the Sentinel-2 MSI picture is more than one-pixel wide. Furthermore, the Sentinel-2 MSI picture that we used for this 

research was obtained during the dry season, meaning that river and maybe some channels had little water or even run 

dry. We can, therefore, be quite confident that the water samples we chose did not include the river region. The region of 

the measured secondary forest region is probable to be lower than the region in question. Primary forest region has been 

the primary target in this research. The secondary forest training samples were primarily from orchards of mature trees. 

Due to variations in spectral features among freshly planted secondary forest and mature secondary forest, many newly 

planted secondary forest area, usually encircled by grass, and could be ignored.  For instance, the distinction between 

newly planted areas and mature secondary forest is around 4 in the Sentinel-2 MSI information  (81). Research with 

comprehensive samples at various phases of development will be used in future research to evaluate spectral features and 

recognize secondary forests at various types and ages. 

5.2 Potential Application of These Classification Methods 

We need a decent consideration of the results of these techniques in order to make ideal use of the actual classification 

technique. In most cases, SVM exceeds the other two algorithms in classification accuracy.  However, in order to select 

an appropriate algorithm, all the probable pros and cons particular to the scenario must be taken into consideration, not 

only in terms of precision as well as in terms of model parameters, speed, and ease of use. As mentioned above, the SVM 

technique must set and modify model parameters. Most definitely, weak parameters will produce poor outcomes. SVM 

loses to ANN and SAM when it comes to speed. (58). SVM classification will take a lot longer in the training phase and 

in the real information classification phase, especially for a big remote sensing dataset, creating SVM unfit for regional or 

global classification (58). No extra model parameters are required for ANN and SAM algorithms and they are less time-

consuming. The SVM technique does not require time for training or prior statistical spectral analyzes, but requires the 

involvement of an expert, so its performance relies on the operator spectral skills and knowledge. The structure of the 

ANN varies with the size of the training data using ANN method. If this rule can be introduced widely to secondary forest 

mapping, the decision method also need no samples of practice and will be the fastest and simplest among the three 

techniques. Additional factors for selecting an algorithm should also include input information and the required result for 

a specified implementation. In coping with noisy data, SVM is not great. Pre-processing will, therefore, be very essential 

for microwave remote sensing information when using SVM to map the secondary forest cover. Furthermore, for 

automatic classification, the quality of training samples is of excellent concern.  For SVM, the outcome of classification 

will be significantly impaired by a comparatively tiny amount of mislabeled training samples. Thus, while SVM requires 

fewer samples, it requires samples of high quality training. The ANN technique requires not only excellent quality but 

also excellent volume training samples. SVM is the ideal technique for sub-regional level classification given its speed 

and classification accuracy, whereas ANN is the superior algorithm for secondary forest cover classification at regional 

and global scales if a big amount of training samples are accessible.  SAM is the second to none selection between these 

three techniques if no training samples are accessible. If the based ANN is appropriate for other areas, the ANN method 

will also require no training samples and in any scenario will be the most relevant method.  

VI.   CONCLUSIONS 

Global and regional forest request has led in comprehensive development and extension of the secondary forest region 

and also the transformation of land cover from natural tropical rainforests to cultivated agro-forests with related 

deforestation over a big region, especially in tropical areas. To monitor and evaluate the effects of these property, 

conversions must be mapped correctly and in a timely way on the environment, biodiversity, and carbon cycle, but also on 
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local economy.  Sentinel-2 MSI information and three classification techniques were studied in this document to map 

secondary forest area in Kelantan test area, a secondary forest area hotspot area. Various training sample sizes (20, 50, 

100, 200, 300, 400, 500 pixels for each type) and parameters were used to evaluate the efficiency of the three separate 

classification techniques.  

The findings indicate that a map of the secondary forest area with a spatial resolution of 10 m can be achieved utilizing 

Sentinel-2 MSI information with general accuracies and Kappa coefficients above 92.42 % and 0.90 respectively for a 

larger sample size of training (i.e. more than 500 pixels per class).  The lower the sample size of the practice, the greater 

the SVM's superiority. SVM was the most time-consuming technique, but, particularly when mapping a big region was 

involved. SAM, compares quicker with others. However, for a larger training sample size, it is less precise with lower 

general accuracies 17 % below SVM and 15 % below ANN. ANN was a compromise on speed and accuracy, but enough 

training data was required. Consideration is given to selecting an appropriate algorithm for secondary forest mapping, 

information size, accessible training data, scope of research region, and time necessity. 
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